
A New Universal Cellular Automaton
Discovered by Evolutionary Algorithms

Emmanuel Sapin1, Olivier Bailleux1, Jean-Jacques Chabrier1, and
Pierre Collet2

1 Université de Bourgogne, 9 av. A. Savary, B.P. 47870, 21078 Dijon Cedex, France
emmanuelsapin@hotmail.com {olivier.bailleux,jjchab}@u-bourgogne.fr

2 Laboratoire d’Informatique du Littoral, ULCO, Calais, France
Pierre.Collet@Univ-Littoral.Fr

Abstract. In Twenty Problems in the Theory of Cellular Automata,
Stephen Wolfram asks “how common computational universality and un-
decidability [are] in cellular automata.” This papers provides elements of
answer, as it describes how another universal cellular automaton than the
Game of Life (Life) was sought and found using evolutionary algorithms.
This paper includes a demonstration that consists in showing that the
presented R automaton can both implement any logic circuit (logic uni-
versality) and a simulation of Life (universality in the Turing sense).
All the elements of the evolutionary algorithms that were used to find R
are provided for replicability, as well as the analytical description in R
of a cell of Life.

1 Introduction

Cellular automata are discrete systems [1] in which a population of cells evolves
from generation to generation on the basis of local transitions rules. They can
simulate simplified “forms of life” [2,3] or physical systems with discrete time,
space and local interactions [4,5,6].

In [7], Wolfram studies the space I of isotropic two states 2D automata
with a transition rule that takes into account the eight neighbours of a cell, to
determine the cell’s state at the next generation. He talks of a special automaton
of I called Game of Life (hereafter referred to as Life) that was discovered by
Conway in 1970 and popularised by Gardner in [2]. In [8], Conway, Berlekamp
and Guy show that Life allows to compute any function calculable by a Turing
machine. Their demonstration of the universality of Life uses gliders, glider guns
and eaters. Gliders are patterns which, when evolving alone, periodically recover
their original shape after some shift in space. A glider gun emits a stream of
gliders that can be used to carry information. An eater absorbs gliders and,
along with stream collisions, allows to create and combine logic gates into logic
circuits. In [9], Rendell gives an explicit proof of the universality of Life by
showing a direct simulation of counter machines.

K. Deb et al. (Eds.): GECCO 2004, LNCS 3102, pp. 175–187, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

176 E. Sapin et al.

Fig. 1. Research approach used to find new universal automata.

In [10], Wolfram lists twenty problems on the theory of cellular automata.
The sixteenth is introduced by the question “How common are computational
universality and undecidability in cellular automata ? ”

Up to now, Life was the only known dynamical universal automaton of I:
Margolus’s cellular automaton billard-ball model [11] is universal but its transi-
tion rules take into account the parity of the generation number meaning that
it is not in I. Then, universal automata with more than two states [12,13] or
more than two dimensions [14] are not in I either. Finally, Banks’s 2D 2-state
cellular automaton [15] is not dynamically universal because its wires are fixed.

This paper describes how another universal automaton of I was sought and
found thanks to evolutionary algorithms. Section 2 describes the search process,
that is developed in sections 3 and 4. Section 5 describes an analytical way to
represent C.A.s, while sections 6 and 7 describe how patterns can be assembled
into logic gates and how glider streams can be redirected and synchronised, in
order to create logic circuits. Finally, section 8 presents a simulation of Life
using the R automaton found in sections 3 and 4, and section 9 summarizes the
presented results and discusses directions for future research.

2 Rationale

Figure 1 shows how new universal automata are sought. A first evolutionary
algorithm is used to find in I a subset of automata accepting gliders.

In this subset, some automata accept glider guns. An automaton, called R0, is
chosen among them, on which attempts are made to demonstrate its universality.

In [8], Conway et al. used an eater to simulate a NAND gate. This observation
is used as a starting point and an eater is sought among automata accepting the
glider gun found in R0, to be used as a building block to implement a NAND gate.
This eater is found in an automaton called R, thanks to a second evolutionary
algorithm.

The ability to create and assemble NAND gates into any logic circuit is then
shown, which demonstrates the logic universality of R. Finally, Life is simulated

A New Universal Cellular Automaton Discovered 177

in R as a proof that R is universal in the Turing sense, since Life was shown to
be able to implement registers cf. [8] and counter machines cf. [9].

3 Finding an Automaton Accepting Gliders

The search space of the evolutionary algorithm is the set I of 2 states 2D auto-
mata described in the introduction. An automaton can be described by telling
what will become of a cell in the next generation, depending on its neighbours.

If symmetric and rotated neighbourhoods are considered as having an iden-
tical effect on a cell (isotropic automata), there are “only” 102 possible different
neighbourhoods for one cell (and 2102 different automata). Therefore, an indivi-
dual can be coded as a bitstring of 102 booleans (cf. fig. 2).

Fig. 2. A black cell on the right of the neighbourhood indicates a future central
cell. The R automaton, can then be represented by 000000000111000111011111111
111111001001011111111000000001110111110111000010001011010000000000000000000.

3.1 Description of the Evolutionary Algorithm That Searches
Gliders

Fitness function. In order to find automata that accept gliders, the evolutio-
nary algorithm attempts to maximise the number of gliders × the number
of periodic patterns that appear during the evolution of a random configu-
ration of cells by the tested automaton. (A more detailed description of the
gliders and periodic patterns detector (inspired by Bays [16]) can be found
in [17].)

Initialisation. The 102 bits of each individual are initialised at random.
Genetic operators. The mutation function simply consists in mutating one

bit among 102, while the recombination is a single point crossover with a
locus situated exactly on the middle of the genotype. This locus was chosen
since the first 51 neighbourhoods determine the birth of cells, while the other
51 determine how they survive or die.

178 E. Sapin et al.

Evolution engine. It is very close to a (µ+λ) Evolution Strategy, although on
a bitstring individual, and therefore without adaptive mutation: the popula-
tion is made of 20 parents that are selected randomly to create 20 children
by mutation only and 10 other by recombination. As in a straight ES+, the
20 best individuals among the 20 parents + 30 children are selected to create
the next generation.

Stopping criterion. The algorithm stops after 200 generations, which, on a
800Mhz PC Athlon, takes around 20 minutes to complete.

3.2 The R0 Automaton: An Experimental Result

The algorithm described above provided several automata accepting gliders.
Among them, some would surprisingly generate glider guns for nearly every
evolution of a random cell configuration.

One of them (called R0) is picked up as a potential candidate for a universal
automaton. Its 102 different neighbourhoods can be visually presented as in fig. 2
and fig. 3 shows the glider gun G0 that appears spontaneously.

Fig. 3. An evolution of a random configuration of cell by R0 showing G0.

4 Looking for an “Eater” in Automata Accepting G0

An eater is now needed in order to simulate a NAND logic gate, be it only because
the glider gun of rule R0 produces 3 too many glider streams that need to be
suppressed to avoid interactions with other parts of a simulated logic circuit.

Ideal eaters are periodic patterns that, after the absorption of a glider, can
resume their original shape and position, quickly enough to absorb another ar-
riving glider (cf. fig. 4).

As no eater was found in R0, a second evolutionary algorithm was elaborated
to automatically find an eater in the space of all automata accepting the glider
gun G0. This space was determined, by finding deterministically which of the 102

A New Universal Cellular Automaton Discovered 179

Fig. 4. Eater of R in action, found by a second evolutionary algorithm.

neighbourhoods of automaton R0 were needed for gun G0 to operate normally.
It turns out that G0 uses 81 different neigbourhoods, meaning that the output
of the 21 other neighbourhoods could be changed in order to find an automaton
R that would both accept the glider gun G0 and an eater (cf. [15]).

An eater being a periodic pattern, a collection of 10 small periodic patterns
of R0 appearing frequently and using only the 81 neighbourhoods necessary for
G0 were chosen. Those periodic patterns were therefore sure to appear in all of
the 221 automata implementing G0.

Finally, in order to find an eater, one needs to perform on the established
collection of periodic patterns what could be called a crash test: each periodic
pattern is positioned in front of a stream of gliders, and its fitness is simply the
number of crashes it survives.

The number of possibilities being quite large (10 patterns to be tested in
different relative positions with reference to the stream of gliders among 221

different automata), a second evolutionary algorithm was therefore elaborated,
with the following characteristics:

Individual structure. An individual is made of:
1. a bitstring of 21 bits determining one automaton among 221,
2. an integer between 1 and 10, describing one pattern among the 10 peri-

odic patterns common to the 81 neighbourhoods needed by G0,
3. the relative position of the pattern relatively to the stream of gliders,

coded by two integers, x and y, varying between [−8, 8] and [0, 1].
Individuals are initialised with R0, a random integer between 1 and 10 and
randomly within their interval for x and y.

Fitness function. Number of gliders stopped by an individual.
Genetic operators. The only operator is a mutator, since no really “intelli-

gent” recombination function could be elaborated. The mutator is therefore
called on all created offspring and can either choose any pattern among the
10 available, or mutate one bit in the bitstring, or move the position of the
pattern by ±1 within the defined boundaries for x and y.

Evolution Engine. It is this time closer to an Evolutionary Programming En-
gine, since it has no crossover, although the EP tournament was not imple-
mented. 30 children are created by mutation of 20 parents selected uniformly.
Among the 50 resulting individuals, the best 20 individuals are selected to
create the next generation.

Stopping criterion. Discovery of an eater that would survive 50 000 collisions.

This algorithm allowed to discover the automaton R described in fig. 2, ac-
cepting both the glider gun G0 and the eater shown in fig. 4.

180 E. Sapin et al.

Interestingly enough, other runs took between 1 and 20 minutes to complete,
to always find the same eater pattern, although with different automata.

5 Analytical Description of a CA

Binary numbers can be implemented as a finite stream of gliders, where gliders
represent 1s and missing gliders represent 0s.

The next step needed to prove the logic universality of R is to find a confi-
guration of glider guns and eaters that can simulate a NAND gate on two streams
of gliders representing two binary numbers.

Unfortunately, the cellular autamaton implementing a NAND gate would be
too difficult to represent and explain by showing groups of cells on a grid, let
alone a CA implementing a cell of Life. Therefore, a much clearer analytical
description was needed, that should also allow replicability of the contents of
this paper.

In order to simplify the representation of a CA, one can replace its building
blocks by an analytical description, made of a letter, referring to the pattern,
followed by three parameters (D, x, y) where D denotes a direction (North, East,
South, W est) and x, y the coordinates of a specific cell of the pattern (cf. [18]).
An arrow is added in graphic descriptions to help visualising the CA.

Several patterns and their analytical representation are described in this
section, namely a glider stream, an eater, a glider gun and a large glider gun:

Glider stream. Fig. 5 shows a glider stream S(E, x, y), where x and y are the
coordinates of the white cell whence an arrow is shooting.

Fig. 5. A glider stream and its analytical representation S(E, x, y).

Eater. The eater of fig. 4 can be identified as E(N, x, y), where N denotes its
northward orientation and x, y denote the position of the white cell.

Glider gun. The glider gun of fig. 3 is unfortunately not usable as is, because
it shoots gliders spaced every nine cells only. The complex guns shown in
fig. 6 shoot gliders spaced by 45 cells, which gives more slack to work on
streams. Fig. 6 shows instances of this gun at generation 2, used later on in
this paper, namely Ga(S, x, y) and Gb(S, x, y). The guns in other cardinal
directions are obtained by rotation thanks to the isotropy of R.

Large glider gun. Another type of glider, called large glider, appears in R.
A large gun (L) shooting a large glider every 45 cells, is made of two complex
guns G, shooting their stream perpendicularly (cf. fig. 7).

A New Universal Cellular Automaton Discovered 181

Fig. 6. Symmetric complex guns of R, viewed at generation 2. x, y are the coordinates
of the white cell, whence an arrow is shooting.

When both streams collide, large gliders are created that sail on the direction
of the stream of the top left gun. The large glider gun of fig. 7 will be referred
to as L(E, 16, 80), as it was decided that its coordinates would be those of
the top left gun. The shape of a large glider is shown on the right of the gun.

Fig. 7. Schematics of a large glider gun L(E, 16, 80), made of two complex Gb guns.

6 Assembling Patterns into a Not Gate

[18] describes the simulation of an AND gate in R. Unfortunately, it is NAND gates
that allow to build any logic circuits, and not AND gates. It is therefore very
important to build a NOT gate for the R automaton to be logically universal.
Before the description of the NOT gate begins, it is important to observe that:

1. The frontal collision of two identical large glider streams produces two ortho-
gonal standard glider streams equal to the input streams. If only one output
glider stream is needed, an eater can be placed in front of the second stream
—cf. fig. 8 and L(E, 16, 80)/L(W, 379, 80)/E(N, 217, 65) in fig. 9.

2. The collision between two standard gliders at a right angle, or between a
standard glider and a large glider at a right angle destroys both gliders. The-
refore, a glider gun (large or complex) G positioned so that it fires gliders at
a right angle towards another stream of standard gliders A will complement
the stream at a right angle: whenever a glider of stream A (symbolising 1)
arrives at the collision point, the glider of stream A and the glider of G dis-
appear (resulting in a 0). On the contrary, an absence of glider in stream A
(symbolising 0) will let a glider of G get through the collision point (resulting
in a 1) cf. second collision of fig. 8.

182 E. Sapin et al.

Fig. 8. This figure presents the three types of collisions used in this paper. 1’s are
represented by gliders, and 0’s by an absence of gliders. The figure starts on the left
with a frontal collision between two streams of large gliders, that creates a stream of
standard gliders going towards the East. In this example, the stream then collides with
a periodic stream of 101010. . . coming from the North at a 90 degrees angle, with the
consequence that the information it carries is complemented and turned by 90 degrees
into a horizontal eastward stream of 010101. . . . This stream finally hits another vertical
stream made of ones coming from the North although slightly displaced, therefore
creating a duplicating collision. The left to right 010101. . . stream goes through the
duplicative collision unmodified, while a complemented stream 101010. . . is created
and issued southwardly.

3. When the right angle stream of gliders is slightly displaced w.r.t. the initial
stream, a collision of gliders does not result in a destruction of gliders. In-
stead, the initial glider goes through the collision, while the glider coming at
a 90 degrees angle disappears, duplicating the stream into a complemented
stream at a 90 degrees angle —cf. fig. 8 and Gb(E, 179, 200) in fig. 9.

Thanks to these three observations, a NOT gate is built on fig. 9 below:
On this figure, the information stream A (S(S, 210, 184)) is shown as a dot-

ted line. A complex glider gun Gb(E, 179, 200) creates a complementary du-
plicate stream A towards the East. The two outputs are redirected by glider
guns Gb(W, 253, 142), Ga(S, 159, 234) and Ga(S, 273, 262) until they are vertical
again. Then, they are complemented into large gliders by the two large gli-
der guns L(E, 16, 80) and L(W, 379, 80). When the frontal collision between the
two large glider streams occurs, a complementary stream A is created towards
the same direction as the original A stream while the other one is “eaten” by
E(N, 217, 65).

7 Intersection and Synchronisation of Streams

In order to prove the logic universality of R, one needs to combine several NAND
gates. This is possible if two streams in any position can be redirected in order to
become the input streams of a NAND gate. This operation can be realised thanks
to intersection and synchronisation patterns.

Intersection. Thanks to complex guns, gliders in a stream are separated by
45 cells. This means that it is possible to have two streams cross each other

A New Universal Cellular Automaton Discovered 183

Fig. 9. Complementation of stream A: the analytical representation for the NOT gate
is {L(E, 16, 80), Ga(S, 159, 234), Gb(E, 179, 200), S(S, 210, 184), E(N, 217, 65), Gb(W,
253, 142), Ga(S, 273, 262), L(W, 379, 80)}.

without any interference. If, for a synchronisation reason, interference cannot
be avoided, [19] shows how a stream intersection can be realised by a cunning
combination of NAND gates.

Synchronisation. It is important to be able to delay one stream w.r.t another,
in order to synchronise them properly just before they enter a logic gate, for
instance. This can be done precisely by diverting four times the stream to
be delayed with orthogonal guns (cf. fig. 10).

Fig. 10. Stream temporisation for synchronisation purposes.

Stream duplication, redirection, synchronisation and intersection allow to
combine any number of NAND gates together, therefore proving the logic univer-
sality of R.

184 E. Sapin et al.

8 Simulation of Life in R

The previous sections have proved that R was universal in the logic sense (i.e.:
it can implement any logic circuit). In order to show that R is universal in the
Turing sense, one must find memory structures like registers within R. Since
this was done in [8] and [9] for Life, finding a simulation of Life in R will prove
the universality of R in the Turing sense.

To simulate Life, one must first find in R a simulation of a cell of Life, and
then a way to tile a surface with any number of interconnected cells.

8.1 Simulation of a Cell of Life

Since it has been shown that any logic circuit can be implemented in R, a single
cell of Life can be implemented as a boolean function computing the value of
a cell S at generation n + 1 from the value of its eight neighbours C1 . . . C8 at
generation n.

The rules of Life are the following: a “living” cell dies at the next genera-
tion unless it has two or three neighbours. A dead cell comes alive at the next
generation iff it has three neighbours in the current generation.

Supposing that the addition of C1+ . . .+C8 gives a three bit number n2n1n0,
the rules of Life can be simply expressed by the formula Sn+1 = n2.n1.(Sn + n0),
which can be translated into a combination of NAND gates. This function, imple-
menting a cell of Life, is represented by the grey area of fig. 11 below, and
analytically described in R in the appendix.

8.2 Interconnecting Cells of Life

In order to simulate Life in R, proof must now be given that it is possible to tile
a surface with identical cells, each interconnected with their 8 neighbours.

All cells being identical, the inputs of a cell must physically correspond to
the outputs of its neighbours. Therefore, the way a cell receives the state of its
neighbours can be induced from the way it sends its own state to its neighbours,
which is what is described below and in fig. 11.

It is straightforward for a cell to send its state to its cardinal neighbours
C2, C4, C5, C7. Sending its state to neighbours C1, C3, C6, C8 is however more
tricky, since those neighbours are situated diagonally. This is done by passing
the information to their neighbours C2 and C7. Therefore, one can see in fig. 11
that the state S of the cell is sent three times to C2 and three times to C7, so
that C2 (resp. C7) can keep one stream for its own use, and pass the two others
to its horizontal neighbours, C1 and C3 (resp. C6 and C8).

S being itself a top neighbour of cell C7, one sees how the state of C7 is
passed over to C4 and C5 in the same way that C2 will pass over the information
of the state of S to C1 and C3.

A New Universal Cellular Automaton Discovered 185

Fig. 11. Diagram of the simulation of a cell of Life.

9 Synthesis and Perspectives

An extensive bibliographic research seems to show that this paper actually pre-
sents the first proof that another 2D 2 state dynamical universal (in the Turing
sense) automaton other than the famous Life exists in I, therefore providing an
element of answer to Wolfram’s 16th problem.

Evolutionary algorithms played a key role in discovering gliders, and a rule
R accepting a glider gun and eaters, in a very large search space.

Further goals are now to give a more complete answer to Wolfram’s problem
by finding whether other universal automata than Life and R exist, and how
common they are. Then, another domain that seems worth exploring is how this
approach could be extended to automata with more than 2 states.

Finally, the study of the construction of an automatic system of selection /
discovery of such type of automata based on evolutionary algorithms is far more
interesting, as it could lead to a new classification.

186 E. Sapin et al.

References

1. S. Wolfram. Universality and complexity in cellular automata. In Physica D,
10:1–35, 1984.

2. M. Gardner. The fantastic combinaisons of john conway’s new solitaire game
“life”. In Scientific American, 1970.

3. M. Gardner. On cellular automata, self-reproduction, the garden of eden, and
the game of life. In Scientific American, 224:112–118, 1971.

4. C. Dytham and B. Shorrocks. Selection, patches and genetic variation: A cellular
automata modeling drosophila populations. Evolutionary Ecology, 6:342–351, 1992.

5. I. R. Epstein. Spiral waves in chemistry and biology. In Science, 252, 1991.
6. Ermentrout, G. Lotti, and L. Margara . Cellular automata approaches to

biological modeling. In Journal of Theoretical Biology, 60:97–133, 1993.
7. S. Wolfram N.H. Packard. Two-dimensional cellular automata. In Journal of

Statistical Physics, 38:901–946, 1985.
8. E. Berlekamp, J.H Conway, and R.Guy. Winning ways for your mathematical

plays. Academic press, New York, 1982.
9. P. Rendell. Turing universaility of the game of life. Andrew Adamatzky (ed.),

Collision-Based Computing, Springer Verlag., 2002.
10. S. Wolfram. Twenty problems in the theory of cellular automata. In Physica

Scripta, pages 170–183, 1985.
11. N. Margolus. Physics-like models of computation. In Physica D, 10:81–95, 1984.
12. K. Lindgren and M. Nordahl. Universal computation in simple one dimensional

cellular automata. In Complex Systems, 4:299–318, 1990.
13. K. Morita Y. Tojima I. Katsunobo T. Ogiro. Universal computing in reversible

and number-conserving two-dimensional cellular spaces. Andrew Adamatzky (ed.),
Collision-Based Computing, Springer Verlag., 2002.

14. A. Adamatzky. Universal dymical computation in multi-dimensional excitable
lattices. In International Journal of Theoretical Physics, 37:3069–3108, 1998.

15. E. R. Banks. Information and transmission in cellular automata. PhD thesis,
MIT, 1971.

16. C. Bays. Candidates for the game of life in three dimensions. In Complex Systems,
1:373–400, 1987.

17. E. Sapin, O. Bailleux, and J.J. Chabrier. Research of complex forms in the
cellular automata by evolutionary algorithms. In EA03.Lecture Notes in Computer
Science, 2936:373–400, 2004.

18. E. Sapin, O. Bailleux, and J.J. Chabrier. Research of a cellular automaton
simulating logic gates by evolutionary algorithms. In EuroGP03.Lecture Notes in
Computer Science, 2610:414–423, 2003.

19. A. Dewdney. The planiverse. Poseidon Press, 1984.

Appendix

This appendix contains an analytical description of a cell of the game of life in
the R automaton, for replicability. Let us define X, Y and Z as:

X(S, 212, 65) = {Gb(E, 18, 91), Gb(N, 80, 25), Gb(S, 212, 65), Gb(W, 241, 36), Gb(W, 253,
142), Gb(N, 370, 23), Gb(W, 433, 93), Ga(S, 159, 234), Gb(E, 179, 200), Ga(S, 273, 262),
S(S, l, 210, 184), E(E, 292, 159), E(S, 219, 78)},

A New Universal Cellular Automaton Discovered 187

Y (E, 1, 1)={Gb(E, 1, 1), Ga(S, 99, 189), Ga(S, 173, 520), Gb(W, 184, 104), E(E, 183, 484)}
Z(E, 1, 1)={Y (E, 1, 1), X(S, 425, 155), Gb(E, 721, 91), Gb(W, 843, 213), Ga(S, 749, 299),
Ga(S, 839, 630), Ga(S, 1019, 749), Gb(W, 1246, 261), E(E, 1229, 276), Gb(E, 990, 180), Gb

(E, 965, 277), Ga(S, 1071, 350), Ga(S, 1145, 457), E(E, 1161, 394), Ga(S, 423, 455), E(S,

427, −47)}.

A cell of the game of life can be described in R as:

LifeCell(E, 1259, −436) = {Z(E, 1, 1), Z(E, −759, 486), Z(E, −1519, 971), Z(E, −2279,
1456), Z(E, −3039, 1941), Z(E, −3799, 2426), Z(E, −4559, 2911), Y (E, −269, −89), Y (E,
−1028, 397), Y (E, −1298, 127), Y (E, −1787, 883), Y (E, −2057, 613), Y (E, −2327, 343),
Y (E, −2546, 1369), Y (E, −2816, 1099), Y (E, −3086, 829), Y (E, −3356, 559), Y (E, −3305,

1855), Y (E, −3575, 1585), Y (E, −3845, 1315), Y (E, −4115, 1045), Y (E, −4385, 775), Y
(E, −4064, 2341), Y (E, −4334, 2071), Y (E, −4604, 1801), Y (E, −4874, 1531), Y (E, −5144,

1261), Y (E, −5414, 991), Y (E, −4823, 2827), Y (E, −5093, 2557), Y (E, −5363, 2287), Y (E,

−5633, 2017), Y (E, −5903, 1747), Y (E, −6173, 1477), Y (E, −6443, 1207), Ga(S, 843, 33),
Ga(S, 933, 123), Ga(S, 1203, 213), X(S, 1205, −84), Gb(E, 663, −147), Y (E, 719, −437)}.

The input streams must arrive at coordinates –6227,988 for Sn, –5957,1258 for
C8, –5687,1528 for C7, –5417,1798 for C6, –5147,2068 for C5, –4877,2338 for
C4, –4607,2608 for C3, –4427,2788 for C2, –4337,2878 for C1.
The stream for Sn + 1 comes out at coordinates 1259,–436 after 21600 genera-
tions.

	Introduction
	Rationale
	Finding an Automaton Accepting Gliders
	Description of the Evolutionary Algorithm That Searches Gliders
	The R_0 Automaton: An Experimental Result

	Looking for an ``Eater'' in Automata Accepting G_0
	Analytical Description of a CA
	Assembling Patterns into a {tt Not} Gate
	Intersection and Synchronisation of Streams
	Simulation of {em Life} in R
	Simulation of a Cell of {em Life}
	Interconnecting Cells of {em Life}

	Synthesis and Perspectives

